Machine Learning for Bioinformatics & Systems Biology

Date & location

7-11 October 2019, in Amsterdam (Amsterdam UMC, Academic Medical Center) or Delft (Delft University of Technology). Depending on the availability of most suitable lecture and computer rooms, the location will be decided upon before the end of August.

Course coordinator

Perry Moerland, Amsterdam UMC (location AMC)

Course credits

3 ECTS

Course overview

Modern biology is a data-rich science, driven by our ability to measure the detailed molecular characteristics of cells, organs, and individuals at many different levels. Interpretation of these large-scale biological data requires the detection of statistical dependencies and patterns in order to establish useful models of complex biological systems. Techniques from machine learning are key in this endeavour. Typical examples are the visualization of single-cell RNA-seq data using dimensionality reduction methods, base calling for nanopore sequencing data using hidden Markov models and (recurrent) neural networks, and classification of high-throughput microscopy image data using convolutional neural networks. In this one-week course, the foundations of machine learning will be laid out and commonly used methods for unsupervised (clustering, dimensionality reduction, visualization) and supervised (mainly classification) learning will be explained in detail. Methods will be illustrated using recent examples from the fields of systems biology and bioinformatics. Methods discussed in the morning lectures will be put into practice during the afternoon computer lab sessions.

Topics include:

  • Density estimation, including histograms, nearest neighbour, Parzen
  • Evaluation, including ROC, cross-validation
  • Parametric and non-parametric classifiers, including linear discriminant analysis, k-nearest neighbours, logistic regression, decision trees and random forests
  • Feature selection, including search algorithms (forward, backward, branch & bound) and sparse classifiers (ridge, lasso, elastic net)
  • Dimensionality reduction, including principal component analysis, multi-dimensional scaling, t-SNE.
  • Clustering, including hierarchical clustering, k-means, Gaussian mixture models
  • Hidden Markov models
  • (Deep) neural networks
  • Kernel-based methods, including support vector machines

After having followed this course, the student has a good understanding of a wide range of machine learning techniques and is able to recognize what method is most applicable to data analysis problems (s)he encounters in bioinformatics and systems biology applications.

Lecturers

  • Perry Moerland, Amsterdam UMC (location AMC)
  • Marcel Reinders, TU Delft
  • Lodewyk Wessels, Netherlands Cancer Institute

Target audience

The course is aimed at PhD students with a background in bioinformatics, systems biology, computer science or a related field, and life sciences. Participants from the private sector are also welcome. A working knowledge of basic statistics and linear algebra is assumed. Preparation material on statistics and linear algebra will be distributed before the course, to be studied by students missing the required background.

More information

For more information about the course you can contact Perry Moerland.

Registration

The registration fees for this 5-day course are:

  • PhD student: 400 euro (excl. VAT)
  • Academic researcher (PI/Postdoc): 600 euro (excl. VAT)
  • Industry: 900 euros (excl.VAT)

The course fee includes:

  • Course material
  • Catering: coffee, tea and lunch will be provided.

There is room for max. 25 participants.

Registration for the course is open. You can register via this registration form.

NB: we almost reached the maximum number of participants. The registration form will close automatically when the maximum is reached. If you would like to be put on a reserve list, please send an email to: education@biosb.nl.

If you are interested in a next edition of the course (next year) please fill out the pre-registration form.